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Abstract. A novel technique based on Schwinger’s proper time method is applied to the Casimir problem of
the M.I.T. bag model. Calculations of the regularized vacuum energies of massless scalar and Dirac spinor
fields confined to a static and spherical cavity are presented in a consistent manner. While our results agree
partly with previous calculations based on asymptotic methods, the main advantage of our technique is
that the numerical errors are under control. Interpreting the bag constant as a vacuum expectation value,
we investigate potential cancellations of boundary divergences between the canonical energy and its bag
constant counterpart in the fermionic case. It is found that such cancellations do not occur.

1 Introduction

The effects of a classical static background field on the ob-
servables of a relativistic quantum field theory have been
investigated in detail for quite some time. Perhaps the
easiest way of distorting a free quantum field is to impose
boundary conditions on a static surface. For the special
case of an electromagnetic field, obeying boundary condi-
tions on two parallel, uncharged and static plates, an at-
tractive force was derived by Casimir as early as 1948 [1].
About two decades later, great efforts were made to inves-
tigate more complicated geometrical arrangements of the
boundaries for a variety of free field theories and boundary
conditions [2]. In particular, following the development of
the bag models of hadrons [3–5], there has been increased
interest in vacuum energies arising as a consequence of
the boundary conditions on a static sphere. More recently,
such calculations have been extended to include interact-
ing, renormalizable quantum field theories in the frame-
work of perturbation theory [6].

There are a number of approaches to calculating vac-
uum expectation values of field operators in relativistic
quantum field theories. In general, one can classify these
into two categories: local or global methods [2]. The global
mode summation techniques avoid the explicit occurrence
of divergences by analytical continuation (Zeta function
regularization [7], heat kernel expansion [8]), whereas lo-
cal methods take advantage of the fact that residual local
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divergences1 manifest themselves only as nonintegrable in-
finities of density functions on the boundary [9].

The main purpose of this paper is to present a con-
sistent calculation of the regularized vacuum energy of
massless scalar and Dirac spinor fields, that are confined
to a static and spherical cavity, using the local stress ten-
sor method [9–11]. The coefficients of the leading bound-
ary divergences of the cavity energy have already been
found elsewhere [10,12,13] based on asymptotic expan-
sions. However, as one of these authors points out [13],
the validity of this method can be questioned. It is there-
fore useful to check these results using an alternative nu-
merical procedure. Moreover, the method developed be-
low gives also insights into the order of magnitude of the
coefficients of subleading divergences and finite parts. In
principle, these can be calculated to any given accuracy,
but in practice constraints on the computational effort can
cause the errors to remain quite large.

In the framework of the M.I.T. bag model [3], there
is for each field (scalar, fermionic and vector) a linear
boundary condition that determines the eigenmodes and
their energies. There is also a nonlinear boundary condi-
tion that guarantees the balance of the pressures at the
boundary. The latter is usually taken into account in an
average fashion, by minimizing the total energy of the
bag with respect to the bag radius. Comparing the re-
sult of this minimization with the experimental data, a
phenomenological value for the bag constant is obtained.
However, the nonlinear boundary conditions of the model
can also be used to interpret the bag constant as a vacuum

1 The free-space global divergence which renormalizes the
cosmological constant is, in this case, already subtracted. This
corresponds to the condition that the vacuum expectation val-
ues vanish in the case of a free-space theory.
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expectation value which makes this additional and rather
artificial minimization condition redundant [12].

This paper is organized as follows: In Sect. 2, we il-
lustrate the local stress tensor method in the case of the
straight-forward example of scalar and Dirac spinor fields
satisfying linear boundary conditions on a plane. Well-
known results are reproduced using the momentum-space
representations of the free-space propagators, the reflec-
tion method [14], and Schwinger’s spectral z-forms [15–
22]. Section 3 contains a derivation of the expressions
for the 00-component of the canonical energy-momentum
tensor, integrated over the angles, for Klein-Gordon and
Dirac fields satisfying the linear boundary conditions of
the M.I.T. bag model on a static, spherical surface. Using
the cavity mode representation of the propagators [15,23,
24], the numerical evaluation is done by summing over the
cavity mode quantum numbers first and integrating the re-
sulting spectral z-form subsequently. An integration over a
regularization volume yields the canonical regularized en-
ergy. Thereby an expansion in terms of the regularization
parameter is derived from the expansion of the density into
a Laurent type series [9]. In Sect. 4, the expression for the
fermionic bag constant is derived and evaluated in analogy
to Sect. 3. In the last section, we summarize our results
and compare them with those available in the literature,
and subsequently, we discuss problems and speculate on
their possible solutions.

2 Vacuum energy in half-space field theories

In this section a method for calculating the vacuum ex-
pectation value of the canonical energy density θ00 is illus-
trated for half-space field theories. Let us consider a mass-
less scalar field subject to Dirichlet (D) and Neumann (N)
boundary conditions, and a massless Dirac field satisfying
the linear boundary condition of the M.I.T. bag model
(MIT,q) [3]

D : φ(x)|x∈S = 0 (1)
N : ∂µn

µφ(x)|x∈S = 0 (2)
MIT, q : (inµγ

µ − 1)ψ(x)|x∈S = 0 , (3)

n := (0, 0, 0, 1), S := {x| x3 = 0}.
Using the reflection method [14], the half-space propaga-
tors read

∆D(x, y) = ∆0(x− y) −∆0(x− yT ) (4)

∆N(x, y) = ∆0(x− y) +∆0(x− yT ) (5)

SMIT,q(x, y) = S0(x− y) − iγ3S0(x− yT ) , (6)

yT = (y0, y1, y2,−y3) ,

where S0 and ∆0 stand for the free-space propagators.
The structure of the canonical energy-momentum tensor
θµν (see for example [25]) requires that, in order to obtain
the (diverging) vacuum energy densities, some bilinear op-
erators must be applied to the corresponding propagators.
For a massless Klein-Gordon field, we obtain

〈θ00(x)〉 = lim
y→x

∂x0∂y0 ∆(x, y) , (7)

whereas, in the case of a massless Dirac field, the canonical
vacuum energy density reads

〈θ00(x)〉 = lim
y→x

i

2
Tr

[
(∂x0 − ∂y0)γ0] S(x, y) , (8)

where ∆(x, y) and S(x, y) denote the field propagators,
respectively.

Let us now give a general illustration of the z-form
method for the calculation of the vacuum expectation
value of local field bilinears. As an example, we concen-
trate on the expectation value of a Lorentz scalar in a
scalar field theory, characterized by the bilinear B.2 This
scalar quantity can be expressed in terms of the identity

〈B(φ(x), φ(x))〉 = lim
y→x

Bx,y ∆
0(x− y) . (9)

Here ∆0(x − y) stands for the free-space Feynman prop-
agator, and Bx,y denotes the point splitted version of B.3
In momentum space, the propagator is given by

∆0(p) ∝ 1
p2 , (10)

and the application of B results in

Bx,y
e−ip(x−y)

p2 ∝ b(p2)
p2 e−ip(x−y) , (11)

where b is a polynomial in p2 (in a scale invariant theory b
is just a power in p2 corresponding to the mass dimension
of B(φ(x), φ(x))). We now take the limit y → x and rotate
to Euclidean momentum space

p0 → ip0 .

The (Euclidean) denominator can then be elevated into
an exponent

1
p2 →

∫ ∞

0
dz e−zp2

, (12)

and the remaining task is to integrate over the (Euclidean)
momentum which involves (modified) Gaussian integrals∫

dpµ

(2π)
{1, (pµ)2, . . .} e−z(pµ)2 ={

1,
1
2z
, . . .

}
1√
4πz

, µ = 0, . . . , 3 . (13)

Calculating 〈θ00〉 for a massless scalar field, distorted by
a Dirichlet plate at x3 = 0, is now straightforward. The
full propagator for this problem reads

∆(x, y) = ∆0(x− y) −∆0(x− yT ), (14)

yT = (y0, y1, y2,−y3) .

2 The Dirac case can be treated in straightforward analogy.
3 A contribution of a product of field derivatives

∂µφ(x) ∂νφ(x) to B, e.g., implies a contribution of ∂xµ∂yν to
Bx,y.
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Renormalizing the cosmological constant, by applying the
bilinear operator of (7) to the difference of the half- and
free-space propagators, yields finite results except at the
boundary. In the case of Dirichlet boundary conditions,
we obtain

〈
θ00(x3)

〉
D

= − i

(2π)4

∫
d4p

(p0)2

p2 + i0
e−2ix3p3

=
1

(2π)4

∫
e

d4p
(p0)2

p2 e−2ix3p3

=
1

32π2

∫ ∞

0
dz e−(x3)2/z z−3

=
1

32π2 (x3)4
, (15)

while for Neumann boundary conditions we have

〈
θ00(x3)

〉
N

= − 1
32 π2(x3)4

. (16)

In the case of a massless Dirac field, subject to the linear
boundary condition of the M.I.T. bag model for the quark
field (see (1)–(3), we obtain〈

θ00(x3)
〉
MIT,q ≡ 0 . (17)

This result is a consequence of the tracelessness of the
energy-momentum tensor for this field [9].

3 Vacuum energy in cavity field theories

In this section, we shall calculate the canonical energy
density of the vacua of massless scalar and Dirac fields,
confined to a static and spherical cavity with radius R.
After a brief description of the methods, the regularized
vacuum energy is calculated for each field.

3.1 Massless scalar fields

In order to perform the free-space subtraction in the spher-
ical symmetric case, we need to express the free scalar
propagator in terms of angular momentum eigenstates us-
ing the Rayleigh expansion for plane waves

∆0(x− y) = − i

(2π)4

∫
d4p

e−ip(x−y)

p2 + i0

= −(4π)2
i

(2π)4

∫
d4p

1
p2 + i0

×
∑
l,l′

m,m′

il(−i)l′jl(pr)jl′(pr′) Yl,m(r̂) (18)

× Y ∗
l,m(p̂) Y ∗

l′,m′(r̂′) Yl′,m′(p̂) .

Applying the bilinear operator of (7) to this representa-
tion of the propagator, and performing in turn the angular

integration, the summation over m and a Euclidean rota-
tion yields, after introducing the z-integration according
to (12),

〈
θ00(r)

〉
=

1
2π5/2

∫ ∞

0
dz

∫ ∞

0
dk k2

∑
l

(2l + 1)

× (jl(kr))2
e−zk2

z3/2 . (19)

For the cavity part, we obtain the vacuum expectation
value of the canonical energy density by applying the bi-
linear operator of (7) to the cavity mode representation of
the propagator (see Appendix A.1). A z-integration is in-
troduced, which originates from a shift of the (Euclidean)
momentum squared denominator of the propagator into
an exponential, as discussed in the preceding section. Here
the meaning of the term momentum differs somewhat from
that of free space due to the boundary conditions, i.e. the
analogue to the expression

p2 = (p0)2 − (p)2 (20)

in free space, is in the cavity

(pn,l)2 = ω2 − (εn,l)2 , (21)

where ω denotes the arbitrary (off-shell) energy, and εn,l

stands for the energy of the mode, labelled by the ra-
dial quantum number n and angular momentum quantum
number l.

The result of the free-space subtracted canonical vac-
uum energy density in the cavity is then〈

θ̃00(r)
〉

D,N
:= 4π

〈
θ00(r)

〉
D,N =

= − 1
4 π1/2

∫ ∞

0
dz

1
z3/2

∑
l

×
{∑

n,µ

∫
dΩ [aD,N

n,l,µ(x)a∗ D,N
n,l,µ (x)] e−zε2

n,l

− 2(2l + 1)
π

∫ ∞

0
dk k2(jl(kr))2 e−zk2

}

= − 1
4 π1/2

∫ ∞

0
dz

1
z3/2

∑
l

(2l + 1)

×
{∑

n

1
R3 N 2 D,N

n,l (jl(|εn,l|r))2 e−zε2
n,l

− 2
π

∫ ∞

0
dk k2(jl(kr))2 e−zk2

}
. (22)

Here the aD,N
n,l,µ(x) denote the scalar cavity modes for ei-

ther Dirichlet or Neumann boundary conditions, and the
ND,N

n,l stand for their normalization constants [15,24], re-
spectively, as explained in Appendix A.1. Using the plane-
wave representation of the free-space propagator implies a
z−3 divergence in the free-space part of (22). Since finite
sums over linearly independent functions cannot change
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the divergence structure common to all of these terms, a
numerical evaluation of 〈θ̃00(r)〉D,N would diverge.

The calculation reveals a substantial difference between
the Dirichlet and the Neumann case. The Dirichlet bound-
ary condition yields a z-form that is integrable at z = 0,
whereas the Neumann boundary condition leads to a non-
integrable z−3/2 divergence. We are able to show that this
divergence is a global one, i.e. independent on r′ := r/R.
It therefore resembles another volume divergence (as does
the free-space global divergence), and hence it can be
omitted through a renormalization of the cosmological
constant.

3.2 Massless Dirac fields

Using (8), the mode summation representing the cavity
Dirac propagator [15,24], the spherical representation of
the free-space propagator, and introducing the Schwinger
z-integral, we obtain, after an angular integration,〈

θ̃00(r)
〉

MIT,q
:= 4π

〈
θ00(r)

〉
MIT,q

=
1

2 π1/2

∫ ∞

0
dz

1
z3/2{∑

κ

1
2

∑
n,µ

∫
dΩ [q†

n,κ,µ(x) q(x)n,κ,µ] e−zε2
n,κ

−
∑

l

4
π

(2l + 1)
∫ ∞

0
dk k2(jl(kr))2 e−zk2

}

=
1

2 π1/2

∫ ∞

0
dz

1
z3/2{∑

κ

1
2

∑
n

1
R3 N 2

n,κ (2J + 1)
(
(jl(|εn,κ|r))2

+ (jl̄(|εn,κ|r))2) e−zε2
n,κ

−
∑

l

4
π

(2l + 1)
∫ ∞

0
dk k2(jl(kr))2 e−zk2

}
,(23)

where

J := |κ| − 1
2
, (24)

l := |J | +
1
2

sgn κ , (25)

l̄ = l − sgn κ . (26)

Here, qn,κ,µ(x) denotes the Dirac cavity mode, labelled
with the radial quantum number n, the Dirac quantum
number κ, and the angular momentum projection µ, as
discussed in Appendix A.2.

3.3 Numerical evaluation of 〈θ̃00〉
Equations (22) and (23) are suitable for a numerical eval-
uation. The k integration is performed in the range from

-10

0

10

20

30

40

0.2 0.4 0.6 0.8 1.0 1.2 1.4

y-
fo

rm

y

r’=0.40
r’=0.60
r’=0.70

Fig. 1. y-forms for 〈θ00〉 at three different locations r′ = r/R
for a massless scalar field fulfilling Dirichlet boundary condi-
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Fig. 2. Massless fermion field y-forms at three different lo-
cations r′ = r/R. The field modes fulfill the linear boundary
condition of the M.I.T. bag model on a static sphere with ra-
dius R

zero to εmax, the maximal energy eigenvalue used in the
sum over cavity modes. In our computations it is typically
of the size 200/R.

The calculation of 〈θ̃00〉 is done in two steps. At first,
we compute the z-form for the corresponding field and
linear boundary condition at a number M of points r′
(M ≈ 500 and r′ := r/R). It thereby proves convenient to
make the variable substitution z = y2 resulting in a pure
y−2 divergence in the y-form. In a second step, we inte-
grate the regular part of the y-form and hence determine
the energy density as a function of the position r′.

In Figs. 1 and 2, the y-forms for 〈θ̃00〉 are displayed
for the scalar Dirichlet and the Dirac case, respectively.
It is shown numerically that the region of small y, where
the form is practically zero, moves to the left with in-
creasing maximal energy εmax, whereas points to the right
of this region remain unchanged. The y-form for 〈θ̃00〉 in
the scalar Neumann case contains a (under an increase
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Fig. 4. Vacuum energy density for a massless scalar field ful-
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radius R

of εmax) stable and global, i.e. independent of r′, y−2-
divergence (see Fig. 3). The subtraction of this divergence
amounts to renormalizing the cosmological constant and
results in a y-form shown in Fig. 3.

The error f(r′, εmax) of 〈θ̃00〉 due to the truncation
of the sum over cavity energies in (22) and (23) can be
determined by varying the cut-off energy εmax. We can
safely estimate the upper bound for f(r′, εmax) at 10−6,
valid for all r′ and all fields and boundary conditions under
consideration. As an example, Fig. 4 shows 〈θ̃00(r′)〉 for a
Dirichlet scalar field.

Following Deutsch and Candelas [9], we may expand
〈θ̃00〉 into a Laurent type series around r′ = 1

〈θ̃00〉(δ′) =
1
R4

[
c−4 (δ′)−4 + c−3 (δ′)−3 + . . .

+ c−1 (δ′)−1 + c0 + . . .+ cN (r′)N

]
,(27)

N > 0 , δ′ := 1 − r′ .

To extract the coefficients of the negative powers in (27),
the function

EL(δ′) := c−4 (δ′)−4 + . . .+ c−1 (δ′)−1

is fitted to the calculated curve in the interval

δ′
min ≤ δ′ ≤ δ′

max ,

where δ′
min and δ′

max are close to zero. For the determina-
tion of the positive power coefficients in (27), we fit the
polynomial

ET (r′) := a0 + a1 r
′ + . . .+ (r′)N

to the calculated curve within the interval

0 ≤ r′ ≤ r′
max := 1 − δ′

max .

A value of N = 9 is used to obtain negligible fitting errors.
Fitting EL(δ′(r′)) to the polynomial

b0 + b1 r
′ + · · · + bN (r′)N

within the above interval, the expression for 〈θ̃00〉 reads

〈θ̃00(r′)〉 = EL(δ′(r′)) +∆E(r′),

∆E(r′) := c0 + c1 r
′ + · · · + cN (r′)N , (28)

ci := ai − bi, (0 ≤ i ≤ N) .

The numerical errors of the coefficients c−4, . . . , c−1 can
be estimated by varying the interval

δ′
min ≤ δ′ ≤ δ′

max .

In our computations we vary δ′
min from 0.05 to 0.15 and

δ′
max from 0.1 to 0.2 to obtain errors of about 1%, 10%

and up to 130% for the coefficients of the leading, next to
leading, and the weakest divergences, respectively.

In the literature, there have been several attempts to
extract boundary divergences of 〈θ̃00〉 or the canonical
energy E(ε′) using the asymptotic properties of analytic
functions [9,10,12,26]. The drawback of these expansions
lies in the fact that one does not know the errors of the
analysis [13]. In our calculation of the regularized energy,
we start with a determination of 〈θ̃00〉, where the only
source of substantial errors is the fitting procedure to the
Laurent type series. However, these errors can be esti-
mated and made smaller in more extensive numerical cal-
culations.

3.4 The regularized canonical vacuum energy

Following Bender and Hays [10], we regularize the canon-
ical energy E by integrating 〈 ˜θ00(r′)〉 only to an upper
limit of

r′
max = (1 − ε′), ε′ :=

ε

R
,
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where ε denotes the distance from the boundary. Using
(27), we obtain

E(ε′) =
1
R

∫ 1−ε′

0
dr′ r′ 2〈θ̃00(r′)〉

=
1
R

[
c̃−3 ε

′ −3 + c̃−2 ε
′ −2 + c̃−1 ε

′ −1

+ c̃log log ε′ + c̃0 + O(ε′)
]
. (29)

The coefficients {c} of (27) and the coefficients {c̃} of (29)
are related by

c̃−3 = 1
3 c−4,

c̃−2 = −c−4 + 1
2 c−3,

c̃−1 = c−4 − 2 c−3 + c−2,

c̃log = −c−3 + 2 c−2 − c−1,

(30)

for the divergent terms, whereas the coefficients of the
positive powers of ε′ depend also on the truncation number
N . Since we are only interested in the limit ε′ → 0, the
only substantial coefficient of {c̃j | j ≥ 0} is c̃0, given by

c̃0 = −1
3
c−4 +

3
2
c−3 − 3

2
c−1 +

N∑
i=0

1
i+ 3

ci . (31)

For the fermionic case, we may assume c−4 = 0. This
is so for fermionic quantum fields because the canoni-
cal energy-momentum tensor coincides with the improved
tensor, and hence it is traceless [9].

Table 1 contains a list of the coefficients {c̃} for the
various fields and boundary conditions, where the errors
are determined from the errors of the coefficients {c} ac-
cording to the rules of error propagation. Note that the
leading divergences for the scalar Dirichlet and Neumann
fields exhibit a behavior analogous to that of the half-space
problem, i.e., they are equal in magnitude and carry op-
posite signs.

4 The fermionic bag constant

The bag constant B is introduced into the Lagrangian to
achieve conservation of a Poincaré generator, i.e. the en-
ergy [3]. In bag model calculations B is determined using
the minimization condition

d

dR
E(R) = 0 ,

where E(R) denotes the total energy of the bag. Milton
[12] suggests that one should calculate the bag constant
from first principles, by interpreting it as a vacuum ex-
pectation value. The nonlinear boundary condition of the
model then serves as a definition for B. Here we will carry
out the calculation of this vacuum expectation value for a
massless fermion field, subject to the boundary conditions

of the M.I.T. bag model on a static sphere with radius R.
The expression for BMIT,q reads

BMIT,q := −1
2
〈∂r (ψ̄ψ)〉

∣∣∣∣
r=R

(32)

and implies that the differential operator

− lim
y→x

1
2

Tr
(
∂rx

+ ∂ry

)
(33)

should be applied to the difference of the cavity and the
free-space propagator. We expect BMIT,q to be infinite. In
order to regularize it, we compute it at some interior point
a distance ε away from the boundary, rather than at some
point on the boundary, as (32) demands. For the angular
integrated version B̃MIT,q(ε′) of BMIT,q(ε′), we arrive at

B̃MIT,q(ε′) := 4π BMIT,q(ε′)

= − 1
π1/2

∫ ∞

0
dz

1
z1/2

∑
κ

(2J + 1)
∑
n>0

N 2
n,κ ε

2
n,κe−zε2

n,κ

×
{
jl(|εn,κ|Rr′)

2l + 1
(l jl−1(|εn,κ|Rr′)

−(l + 1) jl+1(|εn,κ|Rr′))

−jl̄(|εn,κ|Rr′)
2l̄ + 1

(
l̄ jl̄−1(|εn,κ|Rr′)

−(l̄ + 1)jl̄+1(|εn,κ|Rr′)
) }

,

(34)

with
ε′ =

ε

R
, r′ := 1 − ε′ .

There is no free-space part in (34) since Tr γµ ≡ 0 for
µ = 0, . . . , 3.

The result of the calculation of the coefficients {c̃}
in the expansion of the regularized bag constant energy
EB

MIT,q(ε
′) with

EB
MIT,q(ε

′) :=
R3

3
(1 − ε′)3 × B̃MIT,q(ε′)

=
1
R

[
c̃−4 ε

′ −4 + c̃−3 ε
′ −3 + c̃−2 ε

′ −2

+ c̃−1 ε
′ −1 + c̃0 + O(ε′)

]
(35)

is displayed in Table 2. Here we also list the set of co-
efficients in the expansion of the total vacuum energy
Etot

MIT,q(ε
′) given by

Etot
MIT,q(ε

′) :=
∫ 1−ε′

0
dr′ (r′)2

{
〈θ̃00(r′)〉MIT,q − B̃MIT,q(ε′)

}
= EMIT,q(ε′) − EB

MIT,q(ε
′) . (36)



R. Hofmann et al.: Calculation of the regularized vacuum energy in cavity field theories 159

Table 1. The coefficients {c̃} for the divergent and the finite parts of the canonical vacuum energy E(ε′) for
massless scalar Dirichlet (D) and Neumann (N), and Dirac (MIT,q) fields

c̃−3 c̃−2 c̃−1 c̃log c̃0

D 0.0132435 ± 0.1% −0.0232 ± 10% −0.0065 ± 40% −0.0052 ± 10% −10.2 ± 50%
N −0.01318 ± 0.5% −0.0012 ± 60% −0.085 ± 40% 0.64 ± 15% 45 ± 60%
MIT,q 0 −0.01058 ± 0.45% −0.35 ± 100% −0.73 ± 100% 0.16 ± 20%

Table 2. The coefficients {c̃} for the divergent and the finite part of EB
MIT,q and the total vacuum energy

Etot
MIT,q(ε

′)

c̃−4 c̃−3 c̃−2 c̃−1 c̃log c̃0

EB
MIT,q –0.1593±0.2% 0.375±1% –0.119±5% 0.11±20% 0 –7.2×105±50%

Etot
MIT,q 0.1593±0.2% –0.375±1% 0.108±6% –0.46±85% –0.73±100% 7.2×105±50%

5 Summary and Discussion

The main purpose of this paper was to investigate the
effect of a static and spherical boundary on the canon-
ical vacuum energy densities of otherwise free massless
Klein-Gordon and Dirac fields. Thereby the linear bound-
ary conditions of the M.I.T. bag model [3] have been used.
A Green’s function method, that is based on the eigen-
mode representation of the propagator and the Schwinger
parametrization of the Euclidean momentum squared de-
nominator, has been used to obtain numerical results for
the vacuum energy densities. For the fermionic field, a cal-
culation of the regularized bag constant based on its def-
inition via the nonlinear boundary condition was carried
out. Numerical results for the densities have been fitted
to Laurent type series in powers of the distance to the
boundary. The expressions obtained in this manner could
be integrated within a regularization volume to yield an
expansion of the energies in terms of the regularization
parameter. Numerical errors of the coefficients in these
expansions turn out to be less than 1% for the leading
singularity, and up to 100% for the weakest divergences.
In general, the finite part c̃0 could be determined to about
50% accuracy, using this method and the stated compu-
tational effort.

We can compare our results directly with those in the
literature. Bender and Hays [10] have calculated the lead-
ing divergence of the canonical part of the vacuum energy
using a Green’s function method. They introduced their
regularization in the same fashion as we do, but they re-
lied on analytical formulae for the asymptotic expansion
of Bessel functions. For example in the fermionic and the
Dirichlet scalar case, the comparison is as follows:

Bender & Hays : c̃MIT,q
−2 = − 1

120π ≈ −0.0027 ,
c̃D−3 = − 1

24π ≈ −0.0133
this work : c̃MIT,q

−2 = −0.01058 ± 0.45% ,

c̃D−3 = 0.01324 ± 0.1%

(37)

There are, of course, disagreements, but the sign error of
Bender and Hays’ result for the scalar case has already
indirectly been pointed out by Milton [13]. In his work

he mentions an overall sign error in the vector field mode
sum of [10]. Since the mode sum of the transverse electric
vector field is up to the l = 0 contribution equal to that
of the scalar Dirichlet case (compare (2.27) and (2.15) in
[10]), an overall sign error implies a sign error in the result
of the scalar Dirichlet case. The factor of four difference
in the fermionic case might be due to an omission of the
trace of γ2

0 as required by (8).
Olaussen and Ravndal [26] used a Green’s function

method to calculate the electromagnetic canonical vacuum
energy density for a spherical bag, and we are thus not able
to compare their results with ours.

There are two common types of regularization proce-
dures. For example Milton [12,13] calculated the canonical
fermionic and vector field vacuum energy using a tempo-
ral regularization, whereas Bender and Hays [10] worked
with the same volume regularization as we did. Tempo-
ral regularization derives from the idea of point splitting
as a means of cutting off ultraviolett contributions to the
energy density at each point in the cavity. On the other
hand, the volume regularization used above avoids the in-
tegration of boundary divergences of the energy density.
Therefore a strict comparison of results obtained in those
two different regularization schemes should not be made.
One would, however, expect the same divergence structure
with different coefficients. An order of magnitude check of
Milton’s result in comparison with our result for c̃−2 in
the fermionic case [12] reveals less than a factor of 10 dif-
ference. The large deviation in the finite parts (a factor of
about 102) can very well be a consequence of the use of
asymptotic expansions in [12]. In fact, as Milton himself
points out in the conclusions of [13], even existing loga-
rithmic divergences are then not recognized.

The small error of the leading infinite terms allows
us to compare the results for the canonical and the bag
constant part in the fermionic case. A cancellation of the
infinities between these two contributions to the total en-
ergy does not occur, since there is a nonvanishing quartic
divergence in the bag constant contribution, whereas the
leading infinite term in the canonical part is quadratic
(see Table 2). Moreover, the coefficient c̃0 in EB

MIT,q is
quite large.
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One may speculate that, in a gauge theory calculated
perturbatively, infinities arising from the canonical and
the bag constant part of the energy should cancel each
other, leaving a meaningful finite part. We plan to in-
vestigate this matter in the near future. If there is still
no hint for a cancellation, one would argue that the in-
troduction of a constant bag energy density B is a too
naive device to achieve the conservation of the Poincaré
generator, i.e. the energy. Perhaps, a locally conserved
energy-momentum tensor (if at all definable on physi-
cal grounds) would reveal finite vacuum energies. On the
other hand, using the canonical energy-momentum tensor
together with soft boundaries, i.e. practically confining po-
tentials (as for example a harmonic oscillator potential),
could possibly bypass the global vacuum infinities. The
drawbacks of this method are the enormous numerical ef-
fort and the necessity of a cutoff parameter to ensure con-
finement. Moreover, it is quite unsatisfactory, that this
additional parameter would have to be determined ex-
perimentally. Along the same lines, there have been sug-
gestions to introduce phenomenological parameters in the
expression for the bag energy. These parameters could ab-
sorb the divergences. However, they should be determined
experimentally [6,12], which is again unsatisfactory.

A possible extension of the work done here would be
a more extensive numerical calculation (determination of
the energy density at points closer to the boundary) to
achieve higher precision for the coefficients of the sublead-
ing divergences and the finite part.
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A Cavity modes

Here, the eigenmodes and propagators for massless scalar
and Dirac fields in a static spherical cavity of radius R are
given [23,24,27].

A.1 Massless scalar fields

The cavity modes of the massless scalar fields are given as

φn,l,µ(x) =
ND,N

n,l

R3/2 i jl(εn,lr)Ylµ(r̂) . (38)

A mode representation of the propagator reads as

∆(x, x′) = i
∑
n,l,µ

φn,l,µ(x)φ∗
n,l,µ(x′)

×
∫
dω

2π
e−iω(x0−x′

0)

ω2 − (εn,l)2 + i0
. (39)

The energy eigenvalues εn,l depend, of course, on the cho-
sen boundary condition. In the Dirichlet case, we have the
eigenvalue equation

jl(εn,lR) = 0 , (40)

and in the case of Neumann boundary conditions the eigen-
value equation is

ljl(εn,lR) − εn,lRjl+1(εn,lR) = 0 . (41)

The normalization constants ND
n,l and NN

n,l are given as

ND,N
mΣ =

√
2

(εΣ
mR)2 − J(J + 1)

∣∣∣∣ εΣ
mR

jJ(εΣ
mR)

∣∣∣∣ , (42)

Σ = S,L,M

ND,N
mE =

√
2

|jJ+1(εE
mR)| . (43)

A.2 Massless fermion fields

The cavity modes for massless fermion fields satisfying
the linear boundary condition of the M.I.T. bag model
are given by the Dirac spinors

qn,κ,µ(x) =
(

gn,κ(r)χµ
κ(r̂)

ifn,κ(r)χµ
−κ(r̂)

)
, (44)

where χµ
κ(r̂) is the usual two-component spherical spinor.

Here n, κ, and µ denote the radial, Dirac, and magnetic
quantum numbers respectively, and the radial functions
gn,κ(r) and fn,κ(r) are given in terms of the spherical
Bessel functions jl by

gn,κ(r) =
Nn,κ

R3/2 jl(pn,κr) (45)

fn,κ(r) =
Nn,κ sgn (n) sgn (κ)

R3/2 jl̄(pn,κr) . (46)

The discrete momenta pn,κ in (45) and (46) are deter-
mined by the linear boundary condition

(iγ · r̂ + 1) qn,κ,µ(r)|r=R = 0 (47)

which leads to the eigenvalue equation

jl(xn,κ) + sgn (n) sgn (κ) jl̄(xn,κ) = 0 . (48)

The normalization constant Nn,κ in (45) and (46) is given
by

Nn,κ = (2ωn(ωn + κ))−1/2
∣∣∣∣ xn

jl(xn)

∣∣∣∣ . (49)

Here we have introduced the dimensionless energy and
momentum parameters

xn,κ = pn,κR, (50)
ωn,κ = sgn (n)xn,κ . (51)
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The cavity propagator for massless fermions can be rep-
resented in terms of these cavity modes as

S (x, x′) = i
∑
κνµ

qn,κ,µ(x)q̄n,κ,µ(x′)
∫
dω

2π
e−iω(x0−x′

0)

ω − εn ± i0
,

(52)
where the usual Feynman prescription for the poles is
used.
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